SUBJECT INDEX

<table>
<thead>
<tr>
<th>A</th>
<th>Basic oxygen process, Algoma Steel, 298-301</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid bessemer process, heat balance, 256</td>
<td>heat balance, 256</td>
</tr>
<tr>
<td>production rate, 260</td>
<td>Jones and Laughlin, 274-285</td>
</tr>
<tr>
<td>Acid Operations Session, 57-72</td>
<td>Kaiser Steel, 286-287</td>
</tr>
<tr>
<td>Air, atomization of fuel with, vs steam, 240</td>
<td>production rates, 259, 260, 284, 287, 300</td>
</tr>
<tr>
<td>infiltration, Fontana furnaces, 227</td>
<td>Basic roofs, cleaning important, 133, 140, 162</td>
</tr>
<tr>
<td>All-scrap charge, cold-metal practice, 316-317</td>
<td>drop sections, 144, 145, 149</td>
</tr>
<tr>
<td>Aluminum, high purity for mold deoxidation, 99</td>
<td>effect of shutdowns, 144-145, 160, 163</td>
</tr>
<tr>
<td>American Steel Foundries, plant visit, 37</td>
<td>expansion allowance, Fairless, 135</td>
</tr>
<tr>
<td>Analyses, burned dolomite, 167, 177</td>
<td>Fairless design, 135-145</td>
</tr>
<tr>
<td>Chilean feed ore, 52</td>
<td>gun maintenance, 186</td>
</tr>
<tr>
<td>chrome-magnesite brick, 128</td>
<td>heatup practice, 146</td>
</tr>
<tr>
<td>fuel oil, 219</td>
<td>hot patching, 146, 183-193</td>
</tr>
<tr>
<td>gun mix, 181</td>
<td>peeling, related to composition, 132</td>
</tr>
<tr>
<td>hot metal for L-D process, 282, 287, 290</td>
<td>required with oxygen injection, 255</td>
</tr>
<tr>
<td>magnesium silicate brick, 197</td>
<td>tab brick for, 146, 147, 160</td>
</tr>
<tr>
<td>melt, various iron substitute charges, 313</td>
<td>two general types, 126-127</td>
</tr>
<tr>
<td>slag from desiliconization, 210</td>
<td>wear patterns, Fairless, 137, 139</td>
</tr>
<tr>
<td>Angle of repose, defined, 170</td>
<td>Bath temperature, affects manganese recovery, 80</td>
</tr>
<tr>
<td>effect of grain size (dolomite), 171-174</td>
<td>increased by oxygen injection, 318, 323</td>
</tr>
<tr>
<td>Atmospheric moisture, source of hydrogen, 70</td>
<td>L-D process, 283</td>
</tr>
<tr>
<td>Atomization, affects flame radiation, 241</td>
<td>Belgian sand ladle linings, 180-182, 187</td>
</tr>
<tr>
<td>steam vs air, 240</td>
<td>Bessemer bottoms, gunned ganister for, 179-180</td>
</tr>
<tr>
<td>Atomizer design, Fontana, 223</td>
<td>Blowing practice, L-D vessels, 282-283</td>
</tr>
<tr>
<td>Attendance, NOHC conferences, 1925-1959, 335</td>
<td>Bottom blowing, new steelmaking process, 202-216</td>
</tr>
<tr>
<td></td>
<td>Bottom delays, reduced with oil and natural gas</td>
</tr>
<tr>
<td></td>
<td>as fuel, 15 related to dolomite analysis, 175</td>
</tr>
<tr>
<td></td>
<td>Bottom erosion, ferromanganese as cause, 60</td>
</tr>
</tbody>
</table>
| | Brick, basic. See Basic Brick
| | magnesite-chrome vs chrome-magnesite, 129 |
| | magnesium silicate, 197-200 |
| | dolomite, tar-bonded, 281, 290 |
| | Buffalo Section, activities, 31-32 |
| | Bulk density, determination, 160 |
| | effect of grain size (dolomite), 169-170 |
| | Burned dolomite, bulk density, 160 |
| | chemical analysis, 167, 168, 177 |
| | composition related to bottom delays, 175 |
| | consumption, typical, 178 |
| | defined, 166 hydration, 176, 178 |
| Back walls, air cooling, hot spots, 150 | |
| construction, Sparrows Point, 41 | |
| gun maintenance, 185-186 | |
| Basic bessemer, production rate, 260 | |
| Basic brick, characteristics in roofs, 126-134| |
| checker caps constructed of, 197-200 | |
| chrome ore in, disadvantages, 130-131 | |
| hot load deformation data, 128-129 | |
| tab type, in roofs, 146, 147, 160 | |
| types of failure in checkers, 200, 201 | |
| veneering furnace roofs, 190 | |
| vs silica brick for roofs, 41, 143, 159 | |
| Basic Foundry Session, 302-323 | |
| Basic Operations Session, 38-56 | |
| Basic oxygen process, Acme Steel, 288-297 | |
Burned dolomite, screen analyses, 166, 175
test results vs service performance, 173
Burner angle, adjusted during heat, 7, 223, 227
Burner design, combination type, 8
Fontana, 224
for natural gas combustion, 7–9, 12
Ijmuiden research types, 243–246
Sparrows Point, 45–46
Wheeling Steel, 269
Burner thrust, apparatus for measuring,
243–244
effect on flame radiation, 242
importance in burner design, 243
Burn-in, L-D vessel linings, 282
Cabot coke, pig-iron substitute, 59
Calcium silicon, ladle additions, 123
Calculation sheet for open hearth heats, 76
Calderon charging, 308–310
Capped steel, chemical practice, 87–89, 99–100
mechanical practice, 94–97
sheets, hardness pattern, 91, 97
typical applications, 97
Carbon, block, effect on manganese recovery,
79–80
elimination rate with oxygen blowing, 323
hang-up, explained, 83
heat of oxidation, 254
off-heats, 73–74
oxidation rates (various processes), 257, 260, 264
recovery efficiency, injected in bath, 59
segregation, rimmed vs chemically capped slabs, 86–87
substitutes for, 57–59, 312–317
Carbon black, fuel enrichment with, 238–240
Carbon drop, accelerated by oxygen enrichment of combustion air, 270
Carbon-oxygen data, Bethlehem, 263
Casting quality, effect of bath re-carburization, 316
effect of soft melts, 317
Charcoal, substitute for pig iron, 58
Charge, high hot metal, problems, 52–56
regular vs low iron, costs, 313
Charge ore, analysis (Chilean), 52
causes furnace blows if wet, 56
Charging buggies, Sparrows Point, 46
Charging practice, all-scrap, 316–317
Calderon, 308–310
conventional, inherent delays, 308
Charging practice, cupolas (Acme Steel), 291
Fontana, 223, 227–228
high hot metal, 52–56
low iron (cold metal), 312
Sparrows Point, 46–47
Wheeling Steel, 271
Charging time, expedients for reducing, 271
increased by use of iron substitutes, 313
L-D practice, 287
minimized with Calderon orientor, 308–310
reduced by oxygen enrichment of combustion air, 270
Checker brick, basic for capping, 201
magnesium silicate for capping, 197–200
Checker temperatures, Algoma Steel, 201
lowered by oxygen enrichment of combustion air, 269
Sparrows Point, 30
Checkers, Algoma design, 200
all-basic, 200, 201
basic brick caps, 197–200
cleaned hydraulically, 156
Fontana, 223
service life, all-clay vs basic capped, 199
suspended roofs, 41–42
Chemical analyses. See Analyses
Chemistry control, practical program for, 73–82
Chicago Section, activities, 32
Conference Award papers, 33
Chrome-magnesite brick, checkers capped with,
128
chemical analysis, 197
vs magnesite-chrome brick, 129, 133
Chrome ore, characteristics in basic brick, 130
sizing in Russian vs American basic brick, 131
Chromium, calculation of bath addition, 77–78
residual, No. 1 heavy melting scrap vs Proolerized scrap, 305
Clay-ganister gun mix, chemical analysis, 181
screen analysis, 181
Cleanliness, effect of bath deoxidation, 104–118
effect on service life of ball bearings, 121
improved by vacuum melting, 123
rating system, 106–107
rimmed vs capped steels, 100
Cleveland Section, activities, 33
Clinkered dolomite, for bottom maintenance, 165–175
Coke, breeze, vs petroleum coke for recarb, 74,
317
Cabot, pig-iron substitute, 59
substitute for pig iron, acid practice, 58
Cold iron, minimum proportion in cold charge, 314
substitutes for, 312–314, 316, 317
Cold Metal and Basic Foundry Session, 302–323
Cold-rolled sheet steel, mechanically capped, 94
Combustibles analyzer, continuous, 4-16
maintenance of, 13
Combustion air, oxygen enrichment, 251–253
Combustion and Operating Session, 202–249
Conference Award Paper, 18–29
Continuous steelmaking process, proposed, 216
Cooling water temperature, Fontana, 221
related to corrosion rate, 41
Copper residual, heavy melting vs Prolerized scrap, 305, 307
increased with low-iron cold charge, 314
Corn cobs, ground, for hot-top covering, 23–24
Corrosion, furnace doors by brackish water, 41
Creosote oil, radiation characteristics, 238
Cupolas (hot blast), for L-D iron production, 238

D
Decarburizing, injected oxygen for, 24, 318–320
Density, dolomite, 169
Prolerized scrap, 306
Deoxidation, bath, effect on cleanliness, 104–118
mechanically capped steel, 94–97
mold, chemically capped steel, 89
practice, C-1030 killed steel, 108
titanium for, 108, 118
Desiliconizing, high pressure oxygen for, 202–216
Detroit Section, activities, 33–34
Deuterium, tracer element for hydrogen, 61–70
Dolomite, analysis, related to bottom delays, 175
angle of repose, 171–174
brick (tar bonded), in L-D vessels, 281, 299
burned. See Burned Dolomite
clinkered, for bottom maintenance, 165–175
consumption, bottom making, 178
density, 169
handling, Sparrows Point, 46–47
hot tops covered with, 105
hydration, 176, 178
sieve analysis, related to quality, 175
sintering tendency, measure of, 171–172
Door cooling arrangement, Sparrows Point, 41

Drawing quality steel, chemically capped, 85–89
mechanically capped, 94–97

E
Eastern Section, activities, 34
End point, in desiliconization, 208
in the L-D process, 283
End wall construction, Sparrows Point, 41
Erosion, bottom, ferromanganese as cause, 60
roof, rate, related to roof thickness, 189
Excess air, Sparrows Point practice, 50
Executive Board report, 30–37
Expansion allowances, Fairless basic roofs, 135

F
Fan cooling, increases roof life, 189
Feed ore, oxygen equivalent, 318
Chilean, analysis, 52
Fellowship Dinner, 324–334
Ferromanganese, additions, chart, 77
bottom erosion, acid practice, 60
fines, undesirable, 84
furnace additions, effect on cleanliness, 104
standard pallet boxes, 75, 83–88
Ferromolybdenum, source of hydrogen, 63–64
Firebrick (crushed), hot-top covering, 23, 24
Firing practice, Baldwin-Lima, 318

downturns, 11
Fontana, 223, 227
with high hot-metal charge, 52
with natural gas as fuel, 8, 10–12
with oil-natural gas fuel, 11–12
Flame, emissivity, factors affecting, 238–246,
263–264
enrichment, 8–9, 251–253, 268–273, 321
radiation, factors affecting, 239–246, 252,
263–264
temperature, factors affecting, 239–246,
260
Flame research committee, 248–249
Ijmuiden work, 228–247
Flues, Sparrows Point design, 43–44
Fluoride, mold addition, 100, 102
Foaming, eliminated by injecting oxygen, 10,
320
in acid furnace practice, 10
iron substitutes as cause, 313
Forced draft, Sparrows Point, 44, 45, 50–51
Front walls, gun maintenance, 185
Sparrows Point construction, 41
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front walls, water-cooled piers</td>
<td>151</td>
</tr>
<tr>
<td>Fuel consumption, Fontana</td>
<td>220</td>
</tr>
<tr>
<td>minimized by enrichment of combustion air</td>
<td>271</td>
</tr>
<tr>
<td>reduced by bath injection of oxygen</td>
<td>255</td>
</tr>
<tr>
<td>Fuel practice, Fontana</td>
<td>219-226</td>
</tr>
<tr>
<td>Fuels, atomization</td>
<td>4-5, 8, 220, 240</td>
</tr>
<tr>
<td>cost, oil vs natural gas</td>
<td>12</td>
</tr>
<tr>
<td>natural gas, conversion to</td>
<td>4-16</td>
</tr>
<tr>
<td>radiation characteristics</td>
<td>236-240</td>
</tr>
<tr>
<td>thermal values</td>
<td>5, 6, 219</td>
</tr>
<tr>
<td>Fume problems, during desiliconization</td>
<td>203, 217</td>
</tr>
<tr>
<td>in L-D process</td>
<td>279, 286</td>
</tr>
<tr>
<td>with bath injection of oxygen</td>
<td>323</td>
</tr>
<tr>
<td>Furnace availability, L-D shop</td>
<td>287</td>
</tr>
<tr>
<td>Sparrows Point, 49</td>
<td></td>
</tr>
<tr>
<td>Furnace blows, wet ore as cause</td>
<td>56</td>
</tr>
<tr>
<td>Furnace construction, L-D units</td>
<td>279, 293-294</td>
</tr>
<tr>
<td>Furnace delays, reduced with basic roofs, 159</td>
<td></td>
</tr>
<tr>
<td>with natural gas vs fuel oil</td>
<td>14</td>
</tr>
<tr>
<td>Furnace design, factors influencing, 39</td>
<td></td>
</tr>
<tr>
<td>Fontana, 221-225</td>
<td></td>
</tr>
<tr>
<td>new construction, Sparrows Point, 38-49</td>
<td></td>
</tr>
<tr>
<td>Standard Steel, 5</td>
<td></td>
</tr>
<tr>
<td>Wheeling Steel, 268</td>
<td></td>
</tr>
<tr>
<td>Furnace doors, corrosion by brackish water, 41</td>
<td></td>
</tr>
<tr>
<td>Furnace refractories, consumption reduced by</td>
<td></td>
</tr>
<tr>
<td>enriching combustion air</td>
<td>273</td>
</tr>
<tr>
<td>last longer with natural gas firing, 14</td>
<td></td>
</tr>
<tr>
<td>Furnace time, value, cold-metal shop, 313</td>
<td></td>
</tr>
<tr>
<td>Furnace yield, effect of combustion air enrichment, 273</td>
<td></td>
</tr>
<tr>
<td>effect of Prolerized scrap, 305</td>
<td></td>
</tr>
<tr>
<td>related to proportion of hot metal in charge, 53</td>
<td></td>
</tr>
<tr>
<td>Ganister, gun emplacement, 179-185</td>
<td></td>
</tr>
<tr>
<td>Gas cleaning, hot-metal cupola exhaust, 203</td>
<td></td>
</tr>
<tr>
<td>L-D process, 281, 286, 293, 298</td>
<td></td>
</tr>
<tr>
<td>General Session, 1-3</td>
<td></td>
</tr>
<tr>
<td>Ghost lines, causes, 90, 99</td>
<td></td>
</tr>
<tr>
<td>Grain size, effect on dolomite quality, 169-174</td>
<td></td>
</tr>
<tr>
<td>Granite City Steel, plant trip, 37</td>
<td></td>
</tr>
<tr>
<td>Graphite, covering for hot tops, 23-24</td>
<td></td>
</tr>
<tr>
<td>pneumatic injection for recarb, 314, 315</td>
<td></td>
</tr>
<tr>
<td>substitute for pig iron (acid practice), 58</td>
<td></td>
</tr>
<tr>
<td>Gun emplacement, Belgian sand ladle linings,</td>
<td></td>
</tr>
<tr>
<td>180-182, 187</td>
<td></td>
</tr>
<tr>
<td>front wall refractories, 185</td>
<td></td>
</tr>
<tr>
<td>silica ganister, 179-185</td>
<td></td>
</tr>
<tr>
<td>Hangers, for roof patching brick, 194</td>
<td></td>
</tr>
<tr>
<td>Hearth area, vs heat size, 39</td>
<td></td>
</tr>
<tr>
<td>Hearth construction, Sparrows Point, 40-41</td>
<td></td>
</tr>
<tr>
<td>Heat balances, acid bessemer process, 256</td>
<td></td>
</tr>
<tr>
<td>L-D process, 256</td>
<td></td>
</tr>
<tr>
<td>Heat flow, meter for measuring, 232, 234</td>
<td></td>
</tr>
<tr>
<td>Heat size, related to hearth area, 39</td>
<td></td>
</tr>
<tr>
<td>Heat time, effect of combustion air enrichment</td>
<td></td>
</tr>
<tr>
<td>on, 272</td>
<td></td>
</tr>
<tr>
<td>effect of no-iron cold charge, 316, 317</td>
<td></td>
</tr>
<tr>
<td>Fontana, 227</td>
<td></td>
</tr>
<tr>
<td>L-D process, 284, 287, 300</td>
<td></td>
</tr>
<tr>
<td>reduced with mixed fuels, 15</td>
<td></td>
</tr>
<tr>
<td>Sparrows Point, 49</td>
<td></td>
</tr>
<tr>
<td>Heat weight, control, Youngstown, 74</td>
<td></td>
</tr>
<tr>
<td>Heats of oxidation, common reactions, 254-255</td>
<td></td>
</tr>
<tr>
<td>Heatup practice, basic roofs, 146</td>
<td></td>
</tr>
<tr>
<td>Hold time, C-1030 slab heats, 105</td>
<td></td>
</tr>
<tr>
<td>chemically capped ingots, 89, 100</td>
<td></td>
</tr>
<tr>
<td>furnace bath, effect on oxygen content, 262</td>
<td></td>
</tr>
<tr>
<td>Hot metal, analyses (various plants), 56, 282,</td>
<td></td>
</tr>
<tr>
<td>287, 299</td>
<td></td>
</tr>
<tr>
<td>desiliconization, 202-211</td>
<td></td>
</tr>
<tr>
<td>handling facilities at Great Lakes, 53</td>
<td></td>
</tr>
<tr>
<td>high proportions in charge, 52-56</td>
<td></td>
</tr>
<tr>
<td>ladles, gunned sand linings for, 181-183, 185</td>
<td></td>
</tr>
<tr>
<td>Hot patching, roofs, 146, 188-193</td>
<td></td>
</tr>
<tr>
<td>Hot-top coverings, effect on heat loss pattern, 19</td>
<td></td>
</tr>
<tr>
<td>prompt placing important, 27</td>
<td></td>
</tr>
<tr>
<td>various types, 23-27, 105</td>
<td></td>
</tr>
<tr>
<td>Hot topping practices, study, 19-29</td>
<td></td>
</tr>
<tr>
<td>Hot tops, heat loss breakdown, 20</td>
<td></td>
</tr>
<tr>
<td>linings, regular vs insulating, 28-29</td>
<td></td>
</tr>
<tr>
<td>stripping, timing critical, 26-27</td>
<td></td>
</tr>
<tr>
<td>Hydrogen, deuterium as tracer, 61-70</td>
<td></td>
</tr>
<tr>
<td>sampler in bath, 62</td>
<td></td>
</tr>
<tr>
<td>sources, 63, 67</td>
<td></td>
</tr>
<tr>
<td>Ijmuiden flame research, summary, 228-247</td>
<td></td>
</tr>
<tr>
<td>Immersion sampler, for measuring bath hydrogen, 62</td>
<td></td>
</tr>
<tr>
<td>Inclusions, distribution affects physical proper-</td>
<td></td>
</tr>
<tr>
<td>ties, 121-122</td>
<td></td>
</tr>
<tr>
<td>ferroalloys as source, 123</td>
<td></td>
</tr>
<tr>
<td>formation, theory, 115-118</td>
<td></td>
</tr>
<tr>
<td>rating system, 105-112</td>
<td></td>
</tr>
<tr>
<td>shape altered by calcium-silicon, 123</td>
<td></td>
</tr>
</tbody>
</table>
Inclusions, types and distributions, 104
Induced-draft fans, Sparrows Point, 45, 50-51
Inflation and Politics (Fellowship Dinner Speech), 328-334
Ingot yield, capped vs rimmed steel, 90
Ingersoll Rand, 122
Injectors, for submerged oxygen blowing, 205, 212
service life, 217
Instrumentation, Fontana, 220-221
Ijmuiden flame research furnaces, 230-236
on natural gas fuel lines, 6
Sparrows Point, 45
Insulating brick, reduces hot top heat loss, 19
Iron substitutes, use, 312-314, 317
J
Jacking of furnace roofs, 146
Journal of Metals Award, 324-325
Jumbo ingots, rimmed steel, 101-102
K
Kaldo process, advantages, 251, 254, 256, 261
Kinetics, refining reactions, 257-259
Kosmider process, oxygen steelmaking, 256
L
L-D process (see also Basic Oxygen Process),
bath temperature, 283
blowing practice, 282
burning in lining, 282
charging time, 287
converters, 281-282, 293, 299
cupolas for production, 238
dolomite in vessels, 281, 299
fume problems, 279, 286
gas cleaning, 281, 286, 293, 298
heat balances, 256
heat time, 284, 287, 300
ladle additions, 283
manganese residual, 284
phosphorus in steels, 283, 285
production rate, 284, 287
refractories, 281-282, 293, 299
scrap in charge, 280, 282, 298
slag-metal interface area, 298
sulphur in steel, 285
yield, 284, 287
Ladle additions, calcium silicon, 123
L-D process, 283
vs furnace additions, 79
Ladle design, Sparrows Point, 47
Ladle lining, gun-emplaced sand, 180-183
source of hydrogen, 67
Lining construction, L-D vessels, 281, 293, 299
Low-carbon steel, production fundamentals, 261
Low-nitrogen steel, production by pneumatic processes, 261
M
Magnesium silicate brick, checker caps, 197-200
Manganese, bath vs ladle additions, 79, 109, 118
heat of oxidation, 254
optimum level, acid melts, 60
oxidation rate, various processes, 257, 260
primary cause of off heats, 73-74
recovery, factors affecting, 78-81
Manganese residual, L-D steel, 284
related to bath action and slag condition, 312
McKune Award, 30
McKune Award Paper, 4-16
winners, 31-32
Mechanically capped steel, production, 94-97
Melt analyses, iron substitute charges, 313
Mill scale, source of oxygen, 210
Mixers, lining repaired by gunning, 185, 186
Mold deoxidation, chemically capped ingots, 89
mechanically capped ingots, 95
pure aluminum required, 99
Mold handling, Sparrows Point, 47
Molds, source of hydrogen, 67
Molybdenum residual, Prolerized vs heavy melting scrap, 205
N
Natural gas, analysis, 5
atomization of fuel oil with, 4-5
conversion to, 4-16
cost, vs oil, 12
Negative segregation, location in ingot body, 123
Nickel, electrolytic, source of hydrogen, 63
Nitrogen residuals, various processes, 261, 285
Northern Ohio Section, activities, 35
Nozzles, large rimmed ingots, 103
mechanically capped ingots, 95
Nozzles, burner types, designs, 245
ladle, inserts, 95
Nozzles, oxygen lance, convergent-divergent, 203-205

Off-heats, primary causes, 73-74
 slag fluidity as a factor, 83
Oil and gas furnace, flame research tool, 230
OLP steelmaking process, 251, 261
Operating and Combustion Session, 202-249
Operating Metallurgy Session, 73-126
Ore, Chilean charge, analysis, 52
Oxygen, bath injection, 10, 64-66, 255, 262, 267, 318, 319, 323
 bottom maintenance with, 268
 combustion air enriched with, 8-9, 251-253, 268-273, 321
 consumption, L-D process, 284, 287
 desiliconization with, 202-216
 distribution in open hearth process, 265
 excess in open hearth stack, 11
 ore equivalent, 318
 uses in steelmaking, 250-262
 vacuum fusion analysis, 262
Oxygen analyzer, continuous, 4-16
Oxygen generation, Acme Steel, 294-296
 Jones and Laughlin, 282
Oxygen Steelmaking Processes Session, 250-301

Patching practices, L-D vessel linings, 299
 open hearth roofs, 146, 188-193, 194
Petroleum coke, vs coke breeze for recarb, 74
Phosphorus, heat of oxidation, 254
 in L-D steels, 283, 285
 increases solidification shrinkage, 19
Phosphorus removal, at high carbon levels, 260
 converter vs rotor processes, 257
Pig iron, charge substitutes, 57-59, 312, 314, 316, 317
Pitot tube, for high-temperature gases, 234, 236
Pittsburgh Section, activities, 35
Plant trips, American Steel Foundries, 37
 Granite City Steel, 37
Pneumatic pyrometer, measures gas temperature, 272
Politics, and Inflation (Fellowship Dinner Speech), 328-334
Pouring, performance, Sparrows Point, 40
 temperature, effect on ingot homogeneity, 173
 throughput, increased by pit changes, 271
Production rate, cold-metal shop, 260, 320
 different open hearth shops, 48-49, 162
 effect of combustion oxygen, 251, 259, 268-273, 321-322
 effect of fuel enrichment, 240
 hot-metal cupolas, 201
 L-D vessels, 284, 287
 related to hot metal in charge, 53, 54, 264
 various processes, comparison, 260
 with natural gas vs oil for fuel, 14
Prolerized scrap, density, 306
 report on use, 302-306
Pyrometer, for gas temperature measurement, 232

R

Radiation characteristics, various fuels, 236-240
Radiometers, design details, 231-232
Recarburization, by graphite injection, 314, 316
 cost, graphite vs iron and ferroalloys, 314
 petroleum coke vs coke breeze for, 74
Refining reactions, kinetics, 257-259
Refractories (see also Basic Refractories),
 hot-metal cupolas, 271
 L-D converters, 281-282, 293, 299
 Sessions, 126-164, 165-201
Regulator valves, in natural gas lines, 6
Reinartz Scholarship, 30
Repose angle, for clinkered dolomite, 165
Residuals (see also specific elements),
 effect on casting quality, 315
 increased with reduced-iron charges, 314
 with Prolerized vs heavy melting scrap, 305, 307
Rim thickness, rimmed vs capped ingots, 87
Rimex, mold addition practice, 100
Rimmed steel, large ingots, 101-102
 sheets, hardness patterns, 91
Roof construction, Fairless, 135-145
 Fontana, 221
 Sparrows Point, 41
Roof lances, increase slag pocket buildup, 154
Roof thickness, related to erosion rate, 189
 technique for measuring, 188
Roof life (see also Basic Brick),
 effect of flame enrichment, 253
 effect of shutdowns, 144-145, 160, 163
 increased by fan cooling, 189
 increased by veneer patching, 192
SUBJECT INDEX

Roofs, basic. See Basic Roofs
bulging, reduced by increasing rise, 221
cleaning, importance, 133, 149, 162
gun maintenance, 185, 186
hot patching, 146, 188-193
jacking, 146
relative cost, silica vs basic, 143
tab brick in, 146, 147, 160, 190-192
veneering of valley rings in, 189-190
water-cooled sections, 221, 224
Rotors steelmaking process, 251, 254, 256, 261
rate of residual removal with, 257

S

Sampling, bath for hydrogen, 62
downtake gases, equipment for, 7
probe for flowing gases, 236-237
Sand, ladles lined with, 180-183, 185, 187
Scrap, charge, L-D process, 282
orientor (Calderon), 308-310
Prolerized, 302-306
types related to meltdown rate, 270
versus charge oxides, L-D process, 298
yard layout for J&L L-D plant, 280
Screen analysis, burned dolomite, 166
clay-ganister gun mix, 181
Segregation, carbon in rimmed and capped slabs, 86
evaluated by sulphur printing, 21
in chemically capped steel, 85-87
in mechanically capped steel, 95-96
negative, location in ingot body, 123
sulphur, rimmed and capped ingots, 86-87, 93, 95-96, 98, 102
Sensible heat values, L-D process, 256
Solidification shrinkage; effects of alloys, 19
Shutdowns, effect on roof life, 144, 160, 163
Side-wall construction, Sparrows Point, 41
Silica brick, versus basic for roofs, 41, 143, 159
Silicon, heat of oxidation for, 254
increases solidification shrinkage, 19
rate of elimination, converter processes, 257
Sinkheads, sectioning practice, 21
Sintering tendencies (dolomite), how measured, 171-172
Skewbacks, water cooling, 221
Skulls, removal simplified with gunned sand ladle lining, 183
Slag, analyses after oxygen blow, 210
attack on sand ladle linings, 181-182
Slag, fluidity, effect on bath chemistry control, 83
foaming reduced with natural gas fuel, 10
handling, Sparrows Point, 47
volume, L-D process, 298
Slag-metal interface area, various processes, 258
Slag pockets, burners in for heatup, 10
construction, Sparrows Point, 42
enlarged for basic roof service, 154, 161
Soft melts, effect on casting quality, 317
Soot blowers, Fontana, 221
needed with basic roof operation, 158, 161
Sparrows Point, 43-44
Southern Ohio Section, activities, 35-36
Southwestern Section, activities, 36
Spoon thermocouple, aid in controlling carbon, 74
Spouts, gun maintenance, 186
gunned sand linings, 183
Steam, for fuel atomization, 240
Steam-oxygen blowing, bessemer vessels, 256
Submarine ladles, gun maintenance of linings, 186
Suction pyrometer measures temperature of flowing gas, 232, 233
Sulphur, additions, chart, 78
in L-D steels, 285
increases solidification shrinkage, 19
removal rate, cold-metal shop, 312
Sulphur segregation, large rimmed ingots, 102
rimmed vs chemically capped slabs, 86, 93, 98
rimmed vs mechanically capped slabs, 95-96
Sulphur residual, minimized with natural gas fuel, 12
Prolerized vs heavy melting scrap melts, 305
reduced during desiliconization, 217
Sulphur printing, C-1020 ingot, 21
index of chemical segregation, 21
Superduty steels, quality requirements, 120-125

T

Tab brick, in basic roofs, 146, 147, 160
veneering roof courses with, 190-192
Tapping spout, source of hydrogen, 67
Tar-bonded dolomite brick, in L-D vessels, 281, 299
Thermocouples, in roof for furnace heatup, 10
Thomas process. See Basic Bessemer
Tilting furnaces, natural gas fuel for, 4–16
Titanium, deoxidation with, 108, 118
Toy Award, winners, 35
Tracer, deuterium for hydrogen, 61–70
Training sessions, Fontana, 225
Transfer ladles, gunned linings, 181–183, 185
Treasurer's report, 31
Turbohearth, production rate, 260

U
Uptakes, double, Sparrows Point, 42

V
Vacuum fusion analysis, oxygen in steel, 262
Vacuum melting, attributes, 123–124
Vacuum sampling tube, for bath hydrogen, 62
Veneering, metal tab basic brick for, 190–192
valley rings in roofs, 189, 190
Vermiculite, hot tops covered with, 19, 26
Viscosity, fuel oil, 219

W
Wear patterns, Fairless basic roofs, 137, 139
Waste-heat boilers, Sparrows Point, 45, 50
Water cooling of roof refractories, 221
Western Section, activities, 36–37

Y
Yield, capped vs rimmed ingots, 9
effect of oxygen enrichment of combustion
air on, 273
increased with improved hot tops, 19–29
L-D process, 284, 287
related to hot metal in charge, 53
with Prelerized scrap, 305